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SUMMARY

Memory skills strongly differ across the general pop-
ulation; however, little is known about the brain
characteristics supporting superior memory perfor-
mance. Here we assess functional brain network
organization of 23 of the world’s most successful
memory athletes and matched controls with fMRI
during both task-free resting state baseline and
active memory encoding. We demonstrate that, in a
group of naive controls, functional connectivity
changes induced by 6 weeks of mnemonic training
were correlated with the network organization that
distinguishes athletes from controls. During rest,
this effect wasmainly driven by connections between
rather than within the visual, medial temporal lobe
and default mode networks, whereas during task it
was driven by connectivity within these networks.
Similarity with memory athlete connectivity patterns
predicted memory improvements up to 4 months
after training. In conclusion, mnemonic training
drives distributed rather than regional changes, reor-
ganizing the brain’s functional network organization
to enable superior memory performance.

INTRODUCTION

Memory is one of the core components of human cognition.

Memory is critical for learning new information and allows one

to plan for the future (Schacter et al., 2007). The sense of self

is defined, in part, by one’s ability to remember past events. It

is understandable, therefore, that few brain disorders are feared

more than Alzheimer’s disease, the quintessential disorder of

memory loss. The medial temporal lobes have been linked to

memory since the seminal early reports on patient H.M. (Scoville

and Milner, 1957). Increasingly, however, the field has moved

from a region-based understanding of memory function to a

network-based approach. The network approach maintains the
importance of medial temporal lobe (MTL) structures while high-

lighting the relevance of their interactions with cortical structures

like the angular gyrus and posterior cingulate cortex, among

others (Greicius et al., 2003, 2009; Vincent et al., 2006). The

network approach has begun to inform our understanding of

Alzheimer’s disease and how it might spread progressively to

other brain regions (Seeley et al., 2009).

To better understand the network structure supporting mem-

ory, we focus here not on memory loss but on memory gain.

The top participants of the annual World Memory Champion-

ships regularly demonstrate the ability to memorize hundreds

of words, digits, or other abstract information units within

minutes (Foer, 2011). Surprisingly, such memory skills do not

seem to be associated with extraordinary brain anatomy or

general cognitive superiority, but they are acquired through

deliberate training in mnemonic strategies (Maguire et al.,

2003; Dresler and Konrad, 2013). The most prominent mne-

monic technique is the method of loci, an ancient technique

used extensively by Greek and Roman orators (Yates, 1966).

It utilizes well-established memories of visuospatial routes: dur-

ing encoding, the to-be-remembered information is visualized

at salient points along such a route, which in turn is mentally re-

traced during retrieval. While numerous behavioral studies have

demonstrated the efficacy of mnemonic strategies, such as the

method of loci (Worthen and Hunt, 2011), data on the brain

changes underlying mnemonics are sparse. Previous fMRI

studies have demonstrated transient activation of visuospatial

brain regions during use of the method of loci in both expert

and novice users (Maguire et al., 2003; Nyberg et al., 2003).

More long-lasting changes in baseline brain function or

anatomy, however, have not been observed in mnemonic ex-

perts, possibly because distributed effects or distinctive brain

network connectivity patterns are difficult to detect on the basis

of very small sample sizes. To elucidate changes in baseline

brain function due to extensive training in mnemonic strategies,

here we investigate brain networks that are associated with

memory and visuospatial processing. We compare fMRI func-

tional connectivity patterns of a comparably large sample of

the world’s leading memory athletes with mnemonics-naive

subjects before and after an intense training in the method

of loci.
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Figure 1. Overview on the Study Procedures

Top: study schema. All participants underwent at least one experimental session; participants of the training arm underwent a second experimental session after

6 weeks, plus a retest after 4 months. Bottom: sequences of MRI scans and memory tasks performed in pre- and post-training sessions are shown.
RESULTS

Memory Assessment and Training
We investigated 23 memory athletes (aged 28 ± 8.6 years, nine

women) of the top 50 of the memory sports world ranking list.

We used MRI to assess both brain anatomy and function during

task-free rest before engaging in memory tasks. All of these par-

ticipants attribute their superior memory skills to deliberate

training in mnemonic strategies. The memory athletes were

compared with a control group closely matched for age, sex, in-

telligence, and handedness. Of the 23 athletes, 17 participated in

a word learning task under fMRI conditions where they demon-

strated their superior memory abilities compared to controls

(70.8 ± 0.6 versus 39.9 ± 3.6 of 72 words correctly recalled

20 min after encoding; median, 72 versus 41; Wilcoxon signed-

rank test, p < 0.001, r = 0.62).

As to whether naive controls can improve their memory with

mnemonic training similar to that of memory athletes, 51 partic-

ipants (aged 24 ± 3.0 years, all men) without any prior experience

in mnemonic strategies completed two fMRI sessions over a

6-week interval (Figure 1). In each session, all participants

performed a memory test in which they memorized 72 words.

Memory was tested with free recall after 20 min and again after
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24 hr. After the 24-hr retest of the first session, subjects were

pseudo-randomly assigned to 6 weeks (40 3 30 min) of mne-

monic training in the method of loci or an active (n-back working

memory training) or passive (no training) control condition (Fig-

ure 1). At the conclusion of the 6-week training period, par-

ticipants returned for a post-training assessment that again

included a resting state fMRI scan and a further encoding ses-

sion of 72 new words, followed by free recall after 20-min and

24-hr delays. Then 4 months after training completion, partici-

pants of all three groups were invited again for a memory test

of the 72 words used in the first session to assess potential

long-term benefits of mnemonic training.

We observed significantly improved memory performance in

the participants of themnemonic training condition in the second

experimental session, and this improvement was significantly

greater than observed in participants of the active and passive

control groups (F2,48 > 20, p < 0.001, h2 > 0.4 each). These

effects persisted at the 4-month follow-up (F2,43 = 13.4, p <

0.001, h2 = 0.39; Figure 2; Table S2).

Resting State Brain Network Connectivity
We were interested in the functional organization of brain net-

works underlying mnemonic expertise in memory athletes in



Figure 2. Mnemonic Training Has Potent and Enduring Effects on

Memory Capacity

Participants in the mnemonic condition showed significantly greater

improvement in memory performance after training than participants of the

active and passive control groups (p < 0.001, h2 = 0.3 each, no significant

difference between control groups). Mean changes from pre- to post-training

sessions in free recall of 72 learned words ± SEM are shown. During a 4-month

follow-up, subjects re-encoded the list of words from their baseline visit and

were asked to recall the list after a 15-min delay.
comparison to brain network reorganization as a result of an

intense mnemonic training in naive subjects. All participants un-

derwent a T1-weighted anatomical scan and an 8-min resting

state fMRI (rs-fMRI) scan with a 3.0T scanner. Scans were

completed before engaging in any memory-related activity,

ensuring the assessment of pure baseline brain network organiza-

tion. After fMRI data preprocessing, functional connectivity (FC)

was calculated among 71 regions of interest (ROIs) distributed

across six brain networks related to memory and visuospatial
Figure 3. Brain Networks Examined with Resting State fMRI Analyses

(A–C) Six networks based on Shirer et al. (2012) were selected due to their hypoth

blue) default mode networks, (B) higher visual (dark red) and visuospatial (light re
processing (Figure 3). FC was compared between athletes and

controls with a two-sample t test, producing a 713 71 connecti-

vity matrix cataloguing differences in pairwise FC (athletes-con-

trols connectivity matrix, Figure 4). This difference matrix was

then used as a starting point to test whether this network organi-

zationwas innate to the athletes or could be instilled by 6weeks of

mnemonic training in naive subjects.

In the training groups, we therefore calculated pre- and post-

training connectivity matrices in the same manner as above.

Using paired t tests, we produced three 713 71 connectivity dif-

ference matrices documenting changes in connectivity for each

training condition. We then compared these FC changes for

each training group with the FC pattern that distinguished ath-

letes from controls by correlating the two T-score matrices. We

found that mnemonic training elicited changes in brain network

organization that significantly resembled the network connectiv-

ity patterns that distinguish memory athletes from controls (Fig-

ure 4; r = 0.22, p < 0.005). Neither the active nor passive control

group experienced similar changes in neural network organiza-

tion (r < 0.02, p > 0.6 each). In contrast to this multivariate effect

of global connectivity similarity, none of the univariate differ-

ences between any of the groups were significant after correc-

tion for multiple comparisons via false discovery rate. In other

words, without comparison to the athlete/control connectivity

difference pattern, no connectivity changes through mnemonic

training would have been observed in our sample.
Association with Behavioral Measures
We next examined whether brain network re-organization was

related to improved memory performance. We calculated the

correlation of each individual subject’s connectivity change ma-

trix (post-training minus pre-training FC matrix) to the athletes-

controls matrix, producing 51 different similarity values, one for

each participant across the three training arms. These values
esized recruitment by the memory task: (A) ventral (dark blue) and dorsal (light

d) networks, and (C) left (dark green) and right (light green) MTL.
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Figure 4. Similarity of Training-Induced Connectivity Changes with Athlete-Control Connectivity Differences

(A) Brain network connectivity differences between memory athletes and controls.

(B) Connectivity changes from pre- to post-training assessment for each training condition.

(C) Scatterplots and correlations between the memory athlete versus control connectivity difference matrix and the pre- versus post-training connectivity

difference matrices. The pattern of connectivity differences between memory athletes and controls correlates significantly with the pattern of connectivity

changes in themnemonic training condition (r = 0.222, p = 0.005), but does not correlate significantly with the connectivity pattern changes in the active (r = 0.011,

p = 0.943) and passive (r = �0.061, p = 0.632) control groups.
were regressed against the participants’ change-in-free recall

scores (post-trainingminus pre-training free recall performance).

We found that the correlation of individual changematrices to the

athletes-controls matrix was significantly related to the partici-

pants’ changes in free recall performance. This was true for

20-min delayed recall, 24-hr delayed recall, and in a follow-up

memory test 4 months after the end of training (Figure 5; Z =

2.07, p = 0.019; Z = 2.12, p = 0.017; Z = 1.65, p = 0.049,

respectively).

Given that both memory athletes and participants of the mne-

monic condition after training showed strong ceiling effects in

the memory task, no meaningful correlations were possible

within these groups. Further emphasizing the multivariate nature

of our findings, for all other comparisons, simple within-group

univariate correlations with behavior were not significant after

correction for multiple comparisons. We also did not find signif-

icant associations with training speed within the mnemonic

training group.
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Identification of Pivotal Connections and Hubs
To understand the nature of the multivariate finding in more

detail, we tested whether the effect is distributed across all con-

nections between our selected ROIs or driven by more discrim-

inative connections. We focused on those 25 connections in the

athletes-controls matrix whose T-score absolute (i.e., both pos-

itive and negative) values were among the top 1% of largest dif-

ferences. We tested across participants if similarity between the

individual pre-/post-training connectivity difference matrices

with the athlete-control difference matrix differed between this

restricted set of 25 connections and the whole set of 2,485 con-

nections. We found a significant increase in similarity in the mne-

monic training condition (t = 2.61, p = 0.019), but not for the

active (t = 0.59, p = 0.57) or passive (t = –1.65, p = 0.12) control

groups. This suggests that the top 1% of connections carried a

disproportional amount of information, thus allowing a more

specific interpretation of the observed multivariate effect: con-

nectivity between two major hubs (medial prefrontal cortex



Figure 5. Memory Performance Is Correlated with FC Changes

The spatial correlation strength of change-in-FCmatrices to the athletes-controlsmatrixwas significantly related to the participants’ performance on the free recall

tasks at 20 min and 24 hr. This was also true for an additional learning session at 15 min for the baseline list of words re-encoded at the 4-month follow-up visit.
[MPFC] and right dorsolateral prefrontal cortex [DLPFC]) and a

number of regions important for memory processes, including

the left parahippocampal gyrus, bilateral retrosplenial cortex,

posterior cingulate cortex, and right angular gyrus, was pivotal

for the observed similarity between training effects and memory

athlete connectivity patterns (Figure 6).

Resting State Network Dynamics
To gain additional insight into network dynamics, we investi-

gated if the effect was more prominent within or between brain

networks. We repeated the correlational similarity analyses for

885 connections lying entirely within the default mode network

(ventral and dorsal combined), the visual network (visuospatial

and higher visual combined), or theMTL (left and right combined)

and separately for the 1,600 connections between the default

mode, visual, and MTL networks (Figure 7). We found for no

condition significant resemblance of the pre- versus post-con-

nectivity differences with athlete versus control connectivity

differences within the networks (mnemonic training: r = 0.10,

p = 0.29; active control: r = –0.05, p = 0.64; passive control: r =

–0.17, p = 0.13). In contrast, we did find a significant correlation

for pre- versus post-connectivity differences with athlete versus

control connectivity differences between the networks in the

mnemonic training condition (r = 0.21, p = 0.01), whereas the

respective correlations for the active and passive control condi-

tions were not significant (active control: r = 0.02, p = 0.82; pas-

sive control: r = 0.00, p = 0.96). Importantly, for the mnemonic

training condition, similarity with athlete-control connectivity

patterns was significantly larger for between- versus within-

network connectivity (t = 2.17, p = 0.049). Hence, the observed

effect was mainly driven by between- rather than within-network

connectivity patterns during task-free baseline rest.

Brain Network Connectivity during Encoding
To replicate our findings and to test whether the observed multi-

variate similarity between brain network connectivity patterns of

memory athletes and after mnemonic training was restricted to

baseline rest or is also present during active memory encoding,

we repeated the described analyses also for connectivity as

seen in the fMRI encoding task data. We were able to replicate

themain finding of a correlational similarity between athlete/con-
trol and pre-/post-training connectivity difference patterns for

the mnemonic condition (r = 0.26, p = 0.02), but not for the active

(r = 0.03, p = 0.74) and passive (r = –0.03, p = 0.70) control

groups.

Strikingly, in the within- versus between-network analyses for

the task recordings, we found the opposite effect than for task-

free resting state data: we observed a significant correlation for

pre-post with athlete-control connectivity patterns within the

networks, specifically in the mnemonic training condition (mne-

monic training: r = 0.40, p = 0.01; active control: r = 0.00, p =

0.97; passive control: r = 0.04, p = 0.70), however, no significant

similarity for between-network connectivity in any of the training

groups (mnemonic training: r = 0.17, p = 0.17; active control:

r = 0.05, p = 0.65; passive control: r = –0.07, p = 0.50). For the

mnemonic training condition, similarity with athlete-control con-

nectivity patterns was significantly larger for within- versus

between-network connectivity (t = 3.0, p = 0.01). Hence, in

contrast to the task-free resting state, the similarity effect was

driven by within- rather than between-network connectivity pat-

terns during task.

DISCUSSION

Our results demonstrate that superior memory is supported by a

multivariate resting state FC profile distributed throughout the

default mode network, visual networks, and the MTL. This supe-

rior memory connectivity profile can be instilled in naive controls

by a 6-week period of mnemonic training in the method of loci:

the greater the degree to which an individual’s FC profile after

training resembled the memory athletes’ connectivity pattern,

the more that individual profited on measures of short- and

long-delay memory. The improved memory observed after mne-

monic training persists for as long as 4 months after training

concludes. Of note, the training-induced similarity with the supe-

rior memory connectivity profile can be observed both during

task-free baseline resting state and for background brain con-

nectivity during active encoding. During rest, similarity between

training-induced changes and the specific connectivity pattern

of memory athletes is mainly driven by connectivity between

brain networks, whereas during encoding it is driven by within-

network connectivity.
Neuron 93, 1227–1235, March 8, 2017 1231



Figure 6. The Top 1% of Differential Con-

nections between Memory Athletes and

Matched Controls

Red connections depict stronger and blue con-

nections depict weaker FC in memory athletes

compared to controls.
One hypothesis for the efficacy of mnemonic strategies in-

vokes their use of naturally evolved skills, such as visuospatial

memory and navigation (Maguire et al., 2003). In the method of

loci, abstract and unrelated information units are transformed

into concrete and related information patterns that can more

easily be processed by memory-related brain structures, such

as the hippocampus. The method of loci has been associated

with hippocampal place and grid cells (Becchetti, 2010), which

are also active during mental navigation (Bellmund et al.,

2016) and have been involved in episodic memory encoding

and retrieval (Miller et al., 2013; Monaco et al., 2014). Brain

regions critical for visuospatial memory and navigation, such

as retrosplenial and hippocampal areas, are engaged during

mnemonic encoding in memory athletes (Maguire et al., 2003).

Acquisition of themethod of loci in novices is related to activation

increases in the left hippocampal region; its use during encoding

is related with increased activation in the left occipito-parietal

cortex, retrosplenial cortex, and DLPFC (Nyberg et al., 2003);

and its use during recall is related with increased activation in

the left parahippocampal gyrus and retrosplenial cortex (Kondo

et al., 2005). These studies converge with our data in that the

left parahippocampal gyrus and bilateral retrosplenial cortex

both showed significant changes in network connectivity be-

tween memory athletes and controls.

We identified the right DLPFC as a hub for a number of con-

nections that contributed most strongly to the transfer effect.

The DLPFC is more strongly activated when information is en-

coded in a more structured way, e.g., by chunking (Bor et al.,

2003). In particular, the right DLPFC has been linked to the use

of memory strategies: patients with right DLPFC lesions are

specifically impaired when using strategies during memory

tasks (Chase et al., 2008), and transcranial magnetic stimulation
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of the right DLPFC interferes with retrieval

only in users of encoding strategies (Man-

enti et al., 2010). The right DLPFC shows

activation increases mainly for the en-

coding of visual material (Kelley et al.,

1998; Epstein et al., 2002), particularly

during encoding via visuospatial mne-

monics, such as the method of loci

(Kondo et al., 2005). The prominent role

of right DLPFC we found in the brain con-

nectivity profile of experts in the method

of loci is, therefore, convergent with pre-

vious work linking this brain region to

visuospatial processing and encoding

strategies.

Our results suggest participation of

the MPFC in the FC profile supporting

superior memory. Separate research on
mental schemas has highlighted the role of the MPFC in memory

processes: mental schemas enhance learning by allowing effi-

cient encoding of newly acquired information through incorpora-

tion in pre-existing knowledge structures (Tse et al., 2007).

Schema utilization improves learning and is associated with

increased activity in, and connectivity between, the MPFC and

information-related cortices (van Kesteren et al., 2010a). Further-

more, the manipulation of prior schema knowledge was shown

to influence MPFC-hippocampal connectivity during encoding

and post-encoding rest (van Kesteren et al., 2010b). Mnemonics,

such as the method of loci, can be conceptualized as utilizing

schemas, providing pre-learned knowledge structures into

which new information can be rapidly encoded.

Analyzing network dynamics, we observed that the similarity

of mnemonic training-induced brain reorganization with supe-

rior memory connectivity patterns was mainly driven by

between-network connectivity during task-free baseline resting

state and by within-network connectivity during actual encod-

ing. While task-related brain processes are known to be intrin-

sically related to task-independent measurements collected

at rest (Hampson et al., 2006; Tavor et al., 2016; Shine et al.,

2016), the specific association between task-free and task-

related brain function is not well understood yet. Segregated

processing modes coexist with a more global and integrated

coordination of brain networks (Tognoli and Kelso, 2014), and

the pattern of segregated versus integrated brain network

processing dynamically changes depending on cognitive task

demands (Shine et al., 2016). Our data suggest that, during

rest, global between-network measurements are more informa-

tive than regional within-network measurements for detecting

superior memory capacity, whereas the opposite is true during

task engagement.



Figure 7. Brain Network Dynamics

During resting state, the similarity between mnemonic training-induced connectivity changes and athlete-control connectivity differences is mainly driven by

between-brain network connectivity. During encoding, in contrast, the similarity between mnemonic training-induced connectivity changes and athlete-control

connectivity differences is mainly driven by within-brain network connectivity.
In conclusion, we demonstrate that superior memory capacity

is supported by distributed changes in FC rather than by focal

changes in single brain regions. The brain network organization

associated with superior memory can be achieved bymnemonic

training. Among the distributed differences across memory and

visuospatial brain regions, we found most robustly increased

FC among the right DLPFC, the MPFC, and structures of the

MTL in expert users of mnemonics and in naive subjects after

mnemonic training. On the level of network dynamics, effects

were driven between brain networks during rest and within net-

works during active encoding, corroborating differential neural

processing during these two states also for the phenomenon

of memory expertise. Collectively, these results demonstrate

the role of mnemonic strategies in altering functional networks

and improving memory performance, and they support the use

of fMRI brain connectivity measures as a powerful tool in the

study of brain plasticity.
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Software and Algorithms
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Flexible Brain Graph Visualizer Richiardi et al., 2012 https://sourceforge.net/projects/flexbgv
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Martin Dresler (martin.

dresler@donders.ru.nl). Restrictions apply to the raw data of memory athletes, as these allow personal identification of the

participants.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Memory athletes of the Top-50 of the memory sports world rankings were recruited via email, phone calls or personally. Control par-

ticipants werematched for age, sex, handedness, smoking status, and IQ.Where relevant, to ensurematchingwith the generally high

intellectual level of the memory athletes, control participants were recruited among gifted students of academic foundations and

members of the high-IQ society Mensa via mailing lists. Seven control participants were selected among the participants of the

training arm according to their high cognitive performance shown in the screening session, evenly distributed among the three

training conditions. All control participants were tested with a standardized memory test (B€aumler, 1974). Exclusion criterion was

a performance of more than two standard deviations above themean according to the norms provided with the memory test to avoid

including ‘natural’ superior memorizers in the control group, however none of the participants reached this criterion. None of the

cognitive tests were performed immediately before the fMRI session, in order to prevent the resting state network activity being influ-

enced by previous learning. Participants for the training arm of the study were recruited via mailing lists and public announcements

among students of the universities of Munich. In a screening session, exclusion criteria (experience in mnemonic strategies,

psychiatric or neurological history, more than 5 cigarettes per day, other drug consumption) were checked. In addition, fluid

reasoning (Weiß andWeiß, 2006) andmemory abilities (B€aumler, 1974) were tested, and performance was used to pseudo-randomly

assign participants to the three training conditions to ensure similar cognitive baseline levels between groups. To minimize motiva-

tional or compliance effects of the condition assignment, all participants of the training armwere offered to participate in an additional

mnemonic strategy or working memory training after conclusion of the study. One participant dropped out of the active control con-

dition after one week of n-back training due to lack of commitment. One further participant had to be excluded before condition

assignment due to a pathological finding in brain anatomy. Both participants were replaced by newly recruited subjects. All partic-

ipants were paid and provided written informed consent to the study in line with the approval by the ethics committee of the medical

faculty of the University of Munich. For a detailed overview over participants, see Table S1.

METHOD DETAILS

Cognitive training
Immediately after the 24 hr free recall of session 1, all participants of the training armwere pseudo-randomly assigned to one of three

training conditions. Participants of the mnemonic training condition started within one week after condition assignment with a 2 hr

introduction course in mnemonic strategies at the Max Planck Institute of Psychiatry. They were introduced into the method of

loci, were taught their first loci route within and outside of the institute, applied this route in a first memorization task under supervi-

sion, were familiarized with the home-based training platform (https://memocamp.com), instructed how to build new routes, and
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provided with a training plan for the upcoming week. Training plans gave instructions on which set of locations to use to ensure equal

training of all routes and reduce interference of word list memorized on preceding days. The training consisted of 30 min of training

per day for 40 days at home via aweb-based training platform. During the first twoweeks of the training, participants built andmemo-

rized three further loci routes, with which they trained to memorize lists of random words. During the next four weeks, training was

restricted to memorizing lists of random words or images with the four loci routes. The task demand (number of words to be memo-

rized) changed dynamically according to the individual performance of the participant: 5 to be memorized words were presented on

the first trial; the number of presented words increased in subsequent training runs by 5 as soon as a subject managed to perfectly

remember all words in a given run. Speed of training successwas defined as the average number of training runs a participant needed

per level increase until he successfully reached level 8 (i.e., 40words presented), as this level was reached bymostmnemonic training

participants (16 out of 17), but can hardly be achieved by mnemonics-naive individuals. Logfiles of the training sessions were

checked each day to monitor compliance. In case of a missed or too short training session, participants were contacted on the

following morning and instructed to expand the following training session to make up for the missed training time. Once a week, sub-

jects came to the laboratory, were interviewed regarding problems with the training regime, trained under direct supervision, and

were provided with a training plan for the next week.

Participants of the active control condition started within one week after condition assignment with an introduction into the home-

based n-back working memory training program. We used a very demanding version of the dual n-back task, in which participants

had tomonitor and update series of both visually presented spatial locations and auditorily presented letters (Jaeggi et al., 2008). The

value of n varied between blocks of trials, with adjustments made continuously based on performance. The task demand thus

changed adaptively according to the individual performance of the participant. Participants trained 30 min each day for 40 days.

Logfiles of the training sessions were checked each day to control for compliance. In case of a missed or too short training session,

participants were contacted on the following morning and instructed to expand the following training session to make up for the

missed training time. Once a week, subjects came to the laboratory, were interviewed regarding problems with the training regime,

and trained under direct supervision.

The passive control group did not receive any training between the two experimental sessions.

Behavioral data acquisition
All participants of the training arm of the study and performed a word-encoding task in the scanner during pre- and post-training

sessions. In the post-training session, participants of the mnemonic training condition were asked to apply the method of loci to

the task.We used two lists of 72 concrete nouns, with one list being presented per session. Words in both lists were counterbalanced

for word length and frequency, andwere presented in a random order within each list. To prevent order effects across sessions, word

lists were presented in a crossover-designed manner. Words were presented individually for 2 s each, with a jittered inter-stimulus

interval of 2-5 s. After six words, a fixation cross was presented for 30 s, which was followed by the next 6 words etc. Participants

were instructed not to rehearse during the fixation cross periods, and to think of nothing in particular, comparable to the resting state

scan before, however with eyes open.

After the encoding task, aword order recognition task of all 72 words followed. Triplets of words from theword lists encoded before

were presented for 10 s, after which participants had to indicate within 3 s if the order of wordswas exactly as presented before or in a

changed order. Presentation and response to each triplet of target words was followed by a control condition, in which participants

had to indicate if triplets of new words were shown in ascending order according to their number of syllables. Recognition data have

not been analyzed yet and will be presented elsewhere.

Immediately after leaving the scanner, participants had to indicate on a 4-point scale if they had been continuously alert, partly

tired, partly drowsy, or partly asleep during the rs-fMRI scan, and if they had their eyes closed during the resting state and open during

the encoding session. Analysis of this data indicated that all participants adhered to the eyes closed instructions and no participant

reported having been drowsy or asleep during rs-fMRI. Participants were then brought to the behavioral laboratory, where had to

freely recall all 72 words presented during the encoding session. Subjects wrote down all remembered words; after 5 min they

were asked if they would need more time; after another 5 min recall was terminated. After 24 hr, another free recall of 5+5 min

was performed via telephone. Recall score was defined as number of words correctly recalled ignoring order and spelling mistakes.

On average, participants forgot 10.3 ± 7.0 words in the 24 hr recall compared to 20 min recall in the pre-training assessment, and

10.7 ± 8.5 words in the 24 hr recall compared to 20 min recall in the post-training assessment (paired t test: t > 8.9, p < 0.01 each).

During the final retest after four months, participants performed the encoding task once more, this time outside the scanner. The

word list of their first session was used for re-test, and long-term effects were calculated as difference between first session and re-

test session performance. Participants of the mnemonic training condition were asked to use the method of loci for encoding, and all

confirmed use of the strategy after the task. Encoding was followed by a delay period of 15 min, filled with a reasoning task, after

which participants had to freely recall all memorized words. Of the 51 study participants, 2 participants each of themnemonic training

and passive control conditions and 1 participant of the passive control group were not available for the follow-up test session.

MRI data acquisition
All imaging data were collected at theMax Planck Institute of Psychiatry using a 3 T (GEDiscoveryMR750) scanner with a 12-channel

head coil. A standard localizer, coil calibration and a 3D T1-weighted anatomical scan (TR 7.1 ms, TE 2.2 ms, slice thickness 1.3 mm,
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in-plane FOV 240mm, 3203 320x128matrix, 12� flip angle) preceded fMRI data collection. Eightminutes of rs-fMRI with eyes closed

were collected (EPI sequence, TR 2.5 s, TE 30 ms), covering the whole brain with 34 slices, using a 64 3 64 matrix with 3 mm slice

thickness and 1 mm slice spacing, and a field of view of 240 3 240 mm2. The images were AC–PC aligned and acquired using an

interleaved slice acquisition scheme.

After rs-fMRI data collection, participants performed a word encoding task (see ‘‘behavioral data acquisition’’ section above). We

obtained 292 T2*-weighted blood oxygenation level-dependent (BOLD) images for each encoding phase of the experiment, using the

following EPI sequence: repetition time (TR), 2.5 s; echo time (TE), 30ms; flip angle, 90�; 42 ascending axial slices; field of view (FOV),

240 3 240 mm; 64 3 64 matrix; slice thickness, 2 mm.

Participants further performed a word order recognition task in the scanner, and underwent a second rs-fMRI and a DTI scan (Fig-

ure 1). Data of these additional scans have not been analyzed yet and will be presented elsewhere.

ROI selection
Functional connectivity (FC) for all participants was calculated across 71 ROIs modified from Shirer et al. (2012). To generate the

modified ROIs, we first divided the brain into 91 regions: 90 of which covered 14 major networks described by Shirer et al. (2012),

and the rest of the gray matter voxels were treated as a single region. We then divided each region into round(nN/p) parcels using

Ward clustering (Michel et al., 2012), where n is the number of gray matter voxels in the given region, p is the total number of gray

matter voxels in the brain, and N is a user-defined number of parcels, set to 500 in accordance with the literature (Van Essen and

Ugurbil, 2012). To constrain the parcels to be spatially-contiguous, only Pearson’s correlations between fMRI time courses of

spatially-adjacent voxels were considered during Ward clustering. Whereas the Shirer et al. (2012) atlas did not cover a large portion

of cortex and subcortical regions, this processing produced an atlas covering all brain regions (Altmann et al., 2015; Richiardi et al.,

2015). From among these 500 ROIs, we selected 71 ROIs that covered six brain networks chosen a priori as being related to memory

or visuospatial processing and so potentially relevant tomnemonic training, namely the dorsal and ventral default mode networks, the

visuospatial and higher visual networks, and the left and right medial temporal lobes (Figure 3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
For statistical analysis of training-related change in 20min free recall (defined as the difference between pre- and post-training scores

in 20 min free recall) and in 24 hr free recall (defined likewise), we performed ANOVAs, each with the three levelsmnemonic training,

active control, and passive control. For training-related change in 20 min recall, we found a significant effect (F2,48 = 21.5, p < 0.001,

h2 = 0.47), with Bonferroni-corrected post hoc tests indicating a significant difference between mnemonic training and both active

and passive control (p < 0.001 each), but not between the latter two (p > 0.9). Also for training-related change in 24 hr recall, we found

a significant effect (F2,48 = 33.2, p < 0.001, h2 = 0.58), with Bonferroni-corrected post hoc tests indicating a significant difference be-

tween mnemonic training and both active and passive control (p < 0.001 each), but not between the latter two (p = 0.29).

To test for long-term effects, we performed another ANOVA for the change from pre-training 20 min recall to the 4 months retest,

with the three levelsmnemonic training, active control, and passive control. We found a significant effect (F2,43 = 13.3, p < 0.001, h2 =

0.38), with Bonferroni-corrected post hoc tests indicating a significant difference between mnemonic training and both active and

passive control (p < 0.001 each), but not between the latter two (p > 0.9).

17 of the 23 athletes and their respective controls also underwent encoding and retrieval of 72 words as described above, however

were assessed only with short-term free recall, i.e., without the 24 hr or 4 months retest. Due to massive ceiling effects in the athletes

group (70.8 ± 0.6 versus 39.9 ± 3.6 of 72 words correctly recalled 20 min after encoding; Median: 72 versus 41), we used a Wilcoxon

signed ranks test to analyze the difference between athletes and controls.

For detailed memory data, see Table S2.

Resting state fMRI analysis
rs-fMRI data were processed and analyzed using the FMRIB Software Library (FSL: version 4.1). We applied motion correction (for

motion parameters, see Table S3), removed nonbrain structures, and performed spatial smoothing with a 6mm FWHM Gaussian

Kernel. The data were aligned to the MNI152 standard space image with affine linear registration. This was followed by noise regres-

sion of movement, cerebral spinal fluid, white matter, and global signal. The data were additionally filtered with a bandpass filter of

0.01–0.1 Hz, restricting analysis to low frequency BOLD fluctuations.

Functional connectivity (FC) for all participants was calculated across 71 ROIs that covered six brain networks chosen a priori as

being related tomemory or visuospatial processing and so potentially relevant to mnemonic training: dorsal and ventral default mode

network, visuospatial and higher visual network, and left and right medial temporal lobe (see Figure 3). We extracted the mean time

series for each ROI, and calculated the Pearson correlation coefficient between the time series of all ROIs, producing a 713 71matrix

of correlation coefficients. This was done separately for memory athletes andmatched controls. FC was compared between athletes

and controls with a two-sample t test, producing a 71 3 71 matrix cataloguing differences in pairwise FC. We then generated the

same connectivity difference matrices for all the training groups: The pre- and post-training FC matrices were compared with a
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paired-samples t test. This was done separately for the three training conditions, producing corresponding 71 3 71 matrices of

t-values for the mnemonic, and active and passive control conditions.

The FC changes that occurred in each training group were then compared with the differences in FC that distinguish memory

athletes from matched controls by calculating the spatial correlation of the t-score matrices. To do this, we correlated the matrices

of t-values for each training group separately with thematrix of t-values from the t test of athletes versus controls. To test the resulting

correlations for significance we constructed the permutation distribution for each of the correlations: By randomly permuting the

athlete and control pairs (while keeping the matching intact) we generated in a first step 10.000 matrices containing t-values of

the permuted athlete versus control samples. In a second step, each of these matrices was correlated, analog to the procedure

above, with each of the training group matrices, resulting in a permutation distribution for each of the three correlations. From these

we constructed the p values by assessing the proportion of correlations from the permutation tests that had a higher absolute value

than the absolute value of the correlations of the non-permuted data.

Association with behavior
Wenext examined the relationship between network reorganization and improved performance on the free-recall task.We calculated

the spatial correlation of each subject’s change-matrix to the athletes-controls matrix, and regressed the subjects’ spatial correla-

tions with their changes in performance on the free-recall task. This was done separately for the 20 min delay free-recall, the 24 hr

delay free-recall, and the 4 month follow-up. In addition, we analyzed the amount of forgetting that occurred from 20 min recall to

24 hr recall in both the pre- and post-training assessment. For the mnemonic training group, we also associated the training speed

(average number of training runs needed to reach 40 presented words as described above) with network reorganization. Correlations

were converted to Z-scores with the Fisher transformation, and these Z-scores were used to assess the significance of the spatial

correlation.

Identification of pivotal connections and hubs
We selected the top 1% (i.e., 25) connections with the highest t-scores in the athlete-control connectivity difference and visualized

themusing the Flexible Brain Graph Visualizer (Richiardi et al., 2012; https://sourceforge.net/projects/flexbgv). To test if the observed

similarity between mnemonic training effects and athlete/control connectivity differences holds also for this restricted set of 25 con-

nections, we selected the same connections in each training group and repeated the similarity analysis as described above (with

1000 permutations) on these connections.

We then tested whether this restriction to this set of top connectivity differences significantly increased similarity of pre-post

training changes with athlete-control connectivity differences. Instead of the group pre-post training difference matrices, we corre-

lated the individual pre-post training difference matrices with the athlete-control difference matrix, thus obtaining one correlation per

participant. We did this for the full set of 2485 connections and for the top 1%of connections. Via paired t test we then compared how

the selection of regions influenced the previously observed connectivity similarity between training effects and athlete-control con-

nectivity differences.

Within versus between network analysis
The 71ROIswere in total part of 3 larger networks: visual (visuospatial + higher visual combined, 19 ROIs), medial temporal lobe (left +

right combined, 18 ROIs), and default mode network (dorsal + ventral combined, 34 ROIs). To investigate whether the training effect

we observed was driven by within or between network connectivity changes, we sorted our whole set of 2485 unique connections

into 885 connections lying entirely within either the DMN, visual, andMTL network; and in 1600 connections from a given ROI to a ROI

outside of its own network. Thenwe repeated the correlational similarity analysis on the individual level as described above for both of

these sets separately.

Task-based fMRI analyses
Following rs-fMRI, participants completed an encoding task within the fMRI scanner (see description of behavioral data acquisition

above). All fMRI data acquired during encoding were preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). The first five

volumes were discarded to allow for T1-equilibration. The remaining volumes were realigned to the mean image of each session

(for memory athletes and matched controls), or across sessions (for participants in the training arm of the study). The structural

scan was co-registered to the mean functional scan and segmented into gray matter, white matter, and cerebrospinal fluid using

the ‘‘NewSegmentation’’ algorithm. All images (functional and structural) were spatially normalized to theMontreal Neurological Insti-

tute (MNI) EPI template using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra (DARTEL; Ashburner 2007),

and functional images were further smoothed with a 3D Gaussian kernel (8 mm full-width at half maximum, FWHM). Task data of one

participant (active control group) had to be excluded because of technical difficulties.

Next, we assessed functional connectivity during the encoding task. We used a voxel-wise general linear model (GLM) to remove

nuisance-related effects. Nuisance regressors comprised the six realignment parameters, as well as additional regressors that

captured scan-to-scan motion (Power et al., 2012). Specifically, we calculated the framewise displacement (FD) for every scan at

time t by FD(t) = jDdx(t)j + jDdy(t)j + jDdz(t)j + rja(t)j + rjb(t)j + rjg(t)j, where (dx, dy, dz) is the translational-, and (a, b, g) the rotational

movement. Scans that exceeded a head motion limit of FD(t) > 0.3 mm were removed, indicated in one additional regressor per
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removed scan. For one participant (matched control group) more than 50% of the scans during encoding exceeded the FD-limit, and

we therefore excluded this dataset from all task-based functional connectivity analysis. Within the remaining sample, the % of

excluded scans was relatively low, and neither the amount of excluded scans nor average FD differed between groups (all p >

0.38; see Table S4). Finally, the data was high-pass filtered at a cut-off of 128 s. For training groups, both sessions (initial, delayed)

were modeled in one GLM. The residuals of this model were used for all following task-based connectivity analysis.

To capture encoding effects rather than fixation periods that might contain rs-fMRI fluctuations, we only used volumes from the 12

encoding periods for our task-based functional connectivity analysis (30 s each; 144 volumes in total). Encoding volumes were

concatenated and the average residual time course was extracted based on all voxels within each of the ROIs. Since the parts of

the cerebellum were not covered during task data acquisition, we restricted the analysis to 70 ROIs fully covered. Time courses

were correlated (Pearson’s r), yielding a 703 70 correlation matrix per participant and encoding session. Correlations were Fisher’s

z transformed and remaining analyses steps were identical to the analysis of rs-fMRI data (see above).

As a control we repeated the whole analysis and modeled task-related events in addition to nuisance regressors. This so-called

‘‘background connectivity’’ has been demonstrated to be unrelated to task-evoked responses, and is thus thought to provide an in-

dex of sustained processing during cognitive operations (Al-Aidroos et al., 2012; Duncan et al., 2014; Tompary et al., 2015). We

modeled the BOLD response for all encoding trials as a single task regressor, time-locked to the onset of each trial. Instructions

were binned within a separate regressor of no interest. All events were estimated as a boxcar function with a duration of 3 s (encoding

trials), or 5 s (instructions), and were convolved with a canonical hemodynamic response function. None of the results changed

essentially in this background connectivity analysis, in particular none of the significant results became insignificant or vice versa.

Control analyses
As a control analysis for our choice of brain parcellation scheme, we repeated the correlational similarity analysis of connectivity

differences with those ROIs from the Brainnetome parcellation (Fan et al., 2016) that had at least 100 Voxels overlap with the

preselected ROIs from our parcellation (82 of the Brainnetome 273 parcels remained). We were able to replicate our main results

(mnemonic training: r = 0.23, p < 0.003; active control: r = –0.06, p = 0.59; passive control: r = –0.07, p = 0.59). An exploratory whole

brain analysis using the Brainnetome parcellation yielded results in the same direction as our main analysis with pre-selected brain

networks, which however were not significant (mnemonic training: r = 0.08, p = 0.35; active control: r = 0.02, p = 0.78; passive control:

r = –0.06, p = 0.51).

To check whether the observed effects were based on the actual mnemonic training or might have been induced already by the

exposure to the visuospatial imagery strategy in the introductory course in the method of loci, we performed two control analyses.

First, we compared baseline performance on training day 1with theweeklymeans of the individual top scores in the training discipline

‘‘memorizing random words in five minutes,’’ which most closely resembles the task conditions during the fMRI sessions. We

observed a continuous increase in memory performance over the six weeks of training from 16.6 ± 1.2 to 42.3 ± 3.85 words memo-

rized in 5 min (see Figure S1). Second, we analyzed data from an independent study on mnemonic strategies, where participants

underwent an fMRI RS scan (same scanner, sequences, procedures as in our main study) immediately before and after a 2-day intro-

ductory course into visuospatial mnemonic strategies including the method of loci. Hence, participants (n = 18, age 23.5 ± 3.4 years,

all male) were as familiar with the general principles of themethod of loci as participants in ourmain study, however lacked the intense

training phase. In this control analysis, we did not find the similarity with athlete/control connectivity differences that we observed in

ourmain study (r = –0.02, p = 0.85). Both control analyses combined therefore confirm the interpretation that the observed behavioral,

brain network reorganization and similarity effects are related to the intense training in the method of loci and not just on the mere

exposure to the visuospatial principles of the strategy.

As a control analysis for the restricted set of top 1% connectivity differences between athletes and controls, we also tested the

opposite direction, i.e., selected the top 1% connectivity changes in the mnemonic training group and correlated these with the

athlete/control connectivity matrices. We observed a marginally significant similarity (r = 0.68, p = 0.055).

Crucially, to checkwhether our general findings rely on the comparison with the athlete/control connectivity differences or could be

observed in analyses restricted to the training sample, we performed simple univariate analyses that compared connectivity changes

directly with behavioral measures as described above.

Gray matter analysis
T1-weighted datawere analyzedwith FMRIB Software Library (FSL)-VBM, a voxel-basedmorphometry style analysis (Ashburner and

Friston, 2000; Good et al., 2001) performedwith FSL tools (Smith et al., 2004). First, anatomical imageswere brain extracted using the

Brain Extraction Tool (Smith, 2002). Next, tissue-type segmentation was performed using FAST4 (Zhang et al., 2001). The resultant

gray matter partial volume images were then aligned to MNI152 standard space using the affine registration tool FLIRT (Jenkinson

and Smith, 2001), followed by nonlinear registration using FNIRT (Anderson et al., 2007), which uses a b-spline representation of the

registration warp field (Rueckert et al., 1999). For the use of gray matter volume as a voxelwise regressor in the fMRI data analysis, a

four-dimensional (4D) image was created by concatenating every participant’s standard space gray matter image. For direct com-

parison of gray matter volume, the individual standard space gray matter images were averaged to create a study-specific template,

to which the native graymatter imageswere then nonlinearly reregistered. The registered partial volume imageswere thenmodulated

(to correct for local expansion or contraction) by dividing by the Jacobian of the warp field. The modulated segmented images were
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smoothed with an isotropic Gaussian kernel with s = 3 mm. Finally, to test for significant differences between memory athletes and

matched controls, a voxelwise general linear model was applied using permutation-based nonparametric testing, with Threshold-

Free Cluster Enhancement (TFCE) as implemented in FSL (Smith and Nichols, 2009) and p < 0.05 familywise error corrected. We

used the same preprocessing, analysis, and thresholding to examine pre/post changes within the three training conditions.

We also analyzed gray matter volume within the functional regions of interest (fROIs) used in the functional connectivity analyses.

We masked each subject’s processed T1-weighted gray matter segmentation image with a fROI and calculated the gray matter vol-

ume within the masked area. Gray matter volume was defined as the average volume within the area of the segmentation image

masked by a fROI; this was calculated separately for each of the 71 fROIs. We compared gray matter volume in memory athletes

with matched controls across all 71 fROIs using a two-sample t test. Results were thresholded with an FDR correction to account

for multiple comparisons (q < 0.05). The same processing and thresholding was used to examine pre/post changes in the three

training conditions; however, in this analysis we used a paired-samples t test instead of a two-sample t test.

DATA AND SOFTWARE AVAILABILITY

Data resources
ROIs are available via http://findlab.stanford.edu/functional_ROIs.html.
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